Evaluation of the Cadiax Compact® II Accuracy in Recording Preadjusted Condylar Inclinations on Fully Adjustable Articulator

Ahmad Hasan Ahangari, Kianoosh Torabi, Sasan Rasaei Pour, Safoura Ghodsi

ABSTRACT

Background: Mandibular movement analysis is a critical step in making the functional occlusal morphology and improving the diagnosis and treatment of temporomandibular joint disorders (TMDs). Cadiax Compact® is an electronic condylograph that claims to record the horizontal condylar inclination (HCI), Bennett angle (BA) and relative shape of the articular eminence. This study aims at assessing the accuracy of Cadiax Compact® II in its claimed abilities.

Materials and methods: The electronic condylograph (Cadiax Compact®II) was fitted on the fully adjustable articulator (gamma dental reference- SL). After setting of HCI and BA on the arbitrary degrees, eccentric movements were produced manually on the articulator. The Cadiax recorded these preadjusted angles and the accuracy of its recordings was assessed by comparison of the results with the preadjusted HCI, BA and color inserts as references.

Results: The majority of the comparisons showed statistically significant differences between articulator settings and Cadiax recordings. However, the maximum difference was about 2.5° which seems acceptable for clinical practice.

Conclusion: The obtained results showed that Cadiax Compact is an accurate and reliable instrument for diagnostic purposes, yielding reproducible measurements. Despite this, Cadiax is a technically sensitive device that can preclude its routine usage.

Keywords: Articulator, Axiography, Recording, Condylography, Mandibular movement.

Source of support: Nil

Conflict of interest: None declared

INTRODUCTION

Using the information resulting from the patients’ jaw movements, dentists can reproduce occlusal surface forms of the restorations in accordance with the patient’s teeth and available restorations. These data can also be used for articulator settings, improving the diagnosis and treatment of temporomandibular joint disorders (TMDs), and analysis of the patient’s occlusion.

The procedures of condylar inclination recording can be divided to three main methods: (1) radiographic methods, (2) extraoral tracing methods and (3) intraoral recording methods.

Numerous approaches have been reported to record mandibular movements. For many years the prosthodontists used interocclusal wax records for condylar guidance setting. Berman questioned the accuracy of this method.

The mechanical condylograph (axiograph) was introduced by Slavicek. It is supported to improve and simplify the recording of the condylar path by tracing precisely the translation of the condyle. Electronic pantograph was introduced in 1983 under the name of pantronic (Denar Corporation-Anaheim-Calif) to minimize errors occurring in the transferring procedure and to improve the efficiency. In 1986, in a study entitled as ‘comparison of an electronic and a mechanical pantograph,’ the authors concluded that the electronic pantograph’s ability to record the articulator setting consistently was comparable to that of the mechanical pantograph. They claimed that the advantages of pantographic are rapid, sequential recording and elimination of the transferring procedure to set the articulator.

In an in vitro study in 1987, it was shown that the electronic pantograph provided an accurate and reliable means of recording immediate side shift, progressive side shift and protrusive condylar inclination.
Price in 1988 compared electronic pantograph and interocclusal lateral records and showed that occlusal morphologic errors resulting from the use of electronic pantograph are fewer than interocclusal records. Miller in 1992 demonstrated a high correlation of both the electronic method of recording (Cadiax: 1.7 D-Gamma Co-Vienna-Austria) and the mechanical one.

In 2002, Celar and Tamaki evaluated the accuracy of recording horizontal condylar inclination (HCl) and Bennett angle (BA) with Cadiax Compact 1.3. They used Artex articulator and concluded that electronic registrations used to set the articulator control are helpful in clinical practice.

Chang and colleagues in 2004 showed that electronic pantograph had sufficient validity and reliability for HCl and BA and posterior and superior eminence inclinations recordings.

Moreover, in 2008, Mantout, using Cadiax 5.12 and fully adjustable articulator (SAM2-SAM prazision- Stechnik co-Munich- Germany), reported slight differences between the adjusted angle on the bench and the computerized mean angle (± 0.5°) that confirmed the accuracy needed in clinical practice.

This study evaluates the accuracy, reliability and reproducibility of the electronic pantograph records by comparing the preset HCl, BA and anatomic color inserts on a fully adjustable articulator (Gamma dental reference-SL) and the Cadiax Compact®II measurements. Our null hypothesis is that Cadiax records are statistically very close to preadjusted value, and this relatively complicated instrument has no statistically significant error.

MATERIALS AND METHODS

The electronic pantograph was assembled with an intermediate portion to the fully adjustable articulator parallel to its upper jaw. The intermediator was constructed to attach the upper face bow portion of Cadiax and the flags to the upper jaw of the articulator and simulate the clinical condition. The lower face bow was assembled to the lower jaw of the articulator. This bow carried recording styli aligned with articulator hinge axis. The incisal pin height was set to 0 mm and flat incisal table was used (Fig. 1).

Three different groups of recording were evaluated in different sessions by the same operator to eliminate inter-operator bias:

In group 1, the right HCl was set on 20° and the left one on 30°. The BAs was set according to the formula (H/8+ 12) on 14° and 16° respectively. The flat zero degree inserts (blue for HCl and white for side shift) were used. In group 2, the right and left HClCs were set on 50° and BAs were set on 18° according to the related formula. Blue inserts were used for HCl and white for side shift.

In these two groups, the flat inserts were used for HCl and side shift to reduce the number of variables. But for evaluating the claimed ability of Cadiax in diagnosis of anatomic shape of the articular eminence, a third group was added with the following setting:

The right HCl was set on 20° and right BA on 14°. Left HCl was set on 30° and left BA on 16°. Red horizontal inserts were used for HCl and yellow for the side shift on both sides.

The protrusive and latrotrusive movements were made manually up to 11 mm of the translation (Fig. 2). In the Cadiax software, intercondylar distance was set on 150 mm corresponding to the measurement on the articulator. Before recording each movement, the software was calibrated (Zero represented the closed articulator position at CR).

Twenty sets of protrusive and latrotrusive movements were recorded for each group and at the end of each set, the measured angles and inserts were read at 10 mm from the
RESULTS

Table 1 shows the detailed information of one of the groups (group 3). For each group the mean value, mean difference, paired t-test and the percentage of correct recordings for color inserts were assessed (Tables 1 to 3). The measured difference between Cadiax recordings and reference values ranged form (–0.8°) to (2.5°). The differences were statistically significant in all measurements except for right HCI and BA of the first group (HCI: 20° and BA: 14°) and Bennett settings of the third group (14° and 16°; p > 0.05).

The Cadiax diagnosed the color inserts in 93.3 of the instances correctly. The greatest error in color recognition was in the right horizontal insert of the third group (65% correct).

DISCUSSION

In this study, Cadiax Compact® II measured the preadjusted HCI and BA with the overall mean error of 0.44°. The Maximum mean error was 2.5° from the reference setting (group 3-left HCL). According to the literature, an error within 3.4° in the condylar setting seems acceptable for clinical use.20 Using average quantities, graphic methods, or interocclusal records cause even more error in the articulator settings.17,22-24

Therefore, in this study although the majority of measurements differ significantly from the reference adjustment, the results appear acceptable for clinical practice.

<p>| Table 1: Detailed information of angular and color assessments/statistical data |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Group 3</th>
<th>HCI Right: 20°</th>
<th>HCI Left: 30°</th>
<th>BA Right: 14°</th>
<th>BA Left: 16°</th>
<th>Horizontal insert Right: Red</th>
<th>Horizontal insert Left: Red</th>
<th>Bennett insert Right: Yellow</th>
<th>Bennett insert Left: Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>33</td>
<td>13</td>
<td>15</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>32</td>
<td>14</td>
<td>16</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>34</td>
<td>13</td>
<td>16</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>32</td>
<td>14</td>
<td>16</td>
<td>Yellow</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>33</td>
<td>14</td>
<td>17</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>32</td>
<td>15</td>
<td>18</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>33</td>
<td>13</td>
<td>15</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>32</td>
<td>14</td>
<td>16</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>33</td>
<td>14</td>
<td>17</td>
<td>Yellow</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>32</td>
<td>15</td>
<td>17</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>11</td>
<td>19</td>
<td>33</td>
<td>14</td>
<td>16</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>32</td>
<td>15</td>
<td>17</td>
<td>White</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>13</td>
<td>19</td>
<td>33</td>
<td>14</td>
<td>16</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>32</td>
<td>15</td>
<td>17</td>
<td>White</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>33</td>
<td>10</td>
<td>14</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>31</td>
<td>12</td>
<td>16</td>
<td>White</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>33</td>
<td>13</td>
<td>16</td>
<td>White</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>32</td>
<td>14</td>
<td>17</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>33</td>
<td>13</td>
<td>16</td>
<td>Red</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>32</td>
<td>14</td>
<td>17</td>
<td>White</td>
<td>Red</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>Mean</td>
<td>19.200</td>
<td>32.500</td>
<td>13.650</td>
<td>16.100</td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Std.deviation</td>
<td>0.523</td>
<td>0.688</td>
<td>1.182</td>
<td>1.020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean difference</td>
<td>–0.800</td>
<td>2.500</td>
<td>–0.350</td>
<td>0.100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>0.000</td>
<td>0.000</td>
<td>0.201</td>
<td>0.666</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
and they will not cause noticeable errors in the occlusal morphology of restoration or other clinical diagnostic or treatment applications. Furthermore, the articulator settings obtained from the electronic pantograph showed more reproducibility compared with the mechanical pantograph or interocclusal records.17,18

In diagnosis of color inserts, the Cadiax showed 0 to 65% error. The mean diagnosis accuracy was higher than 90% but in the third group with nonflat, curved insert the mean error was greater. This was an in vitro study with precisely controlled conditions; so, we should expect even more errors in recording the patient’s condylar inclinations and anatomy in the clinical situations. Although the results appear clinically acceptable but the majority of the measurements were statistically significant and this rejects our null hypothesis. A part of these errors lies in the technical sensitivity of the electronic pantograph. The least contamination on the sensitive plates (flags) can cause clear errors in recording.

It appears that change in the mouth’s opening degree during excursive movements can cause significant errors, because it changes the relative position of styli to flags. Furthermore, adjustment of HCI can cause added inaccuracy because this articulator has not clear stop for inclination values.

Yet, according to the maximum mean error observed in this study (2.5°) and insignificance of such errors in clinical practice, Cadiax Compact® II can be considered an acceptable and accurate device to set the fully/semiadjustable articulators.

This finding is in agreement with the results of Mantout,1 Celar,20 Anderson14 and Miller’s studies.19

CONCLUSION

The accuracy of Cadiax Compact® II in recording pre-adjusted articulator guidance on Gamma dental reference articulator was evaluated and the following conclusions were reached:

1. Cadiax Compact® II can be used as an accurate and reliable instrument for recording condylar inclinations and relative anatomy of condylar guidance in clinical practice.
2. Cadiax Compact is a technical sensitive device that can cause errors if not concentrated on details. This issue makes the clinical usage problematic. There may be other instruments with more simplicity and less technical sensitivity for routine clinical use.
3. Cadiax Compact results are reproducible and accurate; these characteristics make this instrument a reliable device for research purposes.

ACKNOWLEDGMENT

The authors would like to thank Dr Nasrin Shokrpour at Center for Development of Clinical Research of Nemazee Hospital for editorial assistance.

REFERENCES

ABOUT THE AUTHORS

Ahmad Hasan Ahangari
Assistant Professor, Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

Kianoosh Torabi
Associate Professor, Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran

Sasan Rasaei Pour
Prosthodontist, Department of Prosthodontics, School of Dentistry Shiraz University of Medical Sciences, Shiraz, Iran

Safoura Ghodsi (Corresponding Author)
Prosthodontist, Department of Prosthodontics, School of Dentistry Shiraz University of Medical Sciences, Shiraz, Iran
e-mail: safura_gb82@yahoo.com