Leiomyosarcoma of the maxilla: a rare challenging case
Sedigheh Rahrotaban,a Pouyan Aminishakib,a Samira Derakhshan*a & Sara Mehrabi*b

Leiomyosarcoma (LMS) is a rare malignant lesion of head and neck region. It usually arises from smooth muscle cells of blood vessel wall in this area. Clinically, the tumour often presents as a slow-growing, painless destructive mass with a relatively firm consistency. It usually involves adults, and is rarely reported in children.

Here, we report a case of LMS of maxilla in a 73-year-old male with a destructive behaviour and also discuss the diagnostic procedure proposed to make a definitive diagnosis in such unusual cases.

Keywords maxilla, leiomyosarcoma, neoplasm

Introduction
Soft tissue sarcomas are rare neoplasms in the head and neck as only 10% of all soft tissue tumours occur in this region.1
There are many histopathologic difficulties in the diagnosis of various subtypes of sarcomas.2

Leiomyosarcoma (LMS) is a malignant tumour of smooth muscle origin and is frequently seen at sites with large amount of smooth muscles such as female genital tract and gastrointestinal region.3,4 Its occurrence in head and neck is rare accounting for 4% of all sarcomas in this area5-8 but head and neck LMS behave more aggressive clinically and have poor prognosis.4 The clinical appearance of this neoplasm is usually like benign conditions so it can be mistaken for non-malignant lesions.5 Aggressive primary treatment after early diagnosis is very important for improving prognosis.5

In this article, we represent a case of primary LMS of the maxilla and describe the differential diagnosis of this tumour.

Case Presentation
A 73-year-old man was referred to the Department of Oral and Maxillofacial Pathology, Tehran University of Medical Sciences, in April 2015 with a single ulcerated swelling of the posterior right area of upper jaw under complete denture about 1 month ago. Clinical examination of the affected area revealed that alveolar bone was totally replaced by an exophytic ulcerated mass. No other intra/extra oral sign was observed following comprehensive clinical examination.

Also, the past medical/dental history of the patient was unremarkable.

The panoramic view of the maxilla showed an ill-defined radiolucent lesion of the right, posterior area which seemed to invade into right maxillary sinus (Fig. 1). Therefore, a cone beam computed tomography (CBCT) image was taken to determine the exact margin and destructive behaviour of the lesion. The imaging features of the lesion confirmed the destruction of the whole thickness of alveolar bone and infiltration to the maxillary sinus (Fig. 2). Then, an incisional biopsy was performed by an oral and maxillofacial surgeon, and haematoxylin and eosin (H&E) stained histopathologic slides were examined using light microscopy. The sections

Fig. 1 Panoramic view of a radiograph showing destruction of the floor of the right maxillary sinus.

Fig. 2 Cone beam computed tomography (CBCT) showing destruction of buccal and palatal plate of the maxillary bone.
Fig. 3 Fascicles of spindle shaped tumoural cells (Hematoxylin and Eosin stain; 40×).

Fig. 4 Tumoural cells showing atypia and atypical mitotic figures (Hematoxylin and Eosin stain 100×).

Fig. 5 Immunohistochemical stain for desmin showing positivity in cytoplasm of tumoural cells.

Fig. 6 Immunohistochemical stain for smooth muscle actin (SMA) showing positivity in cytoplasm tumoural cells.

Fig. 7 Immunohistochemical stain for Ki67 showing more than 50% proliferation index in tumoural cells nuclei.

revealed highly cellular fascicles of neoplastic spindle cells with pleomorphic features and scant cigar-shaped nuclei (Fig. 3). Numerous mitotic figures and also atypical tri-polar and ring-shaped mitotic figures were observed (Fig. 4). Also, scattered foci of necrosis were seen among tumoural cells.

So, a primary diagnosis of "malignant spindle cell tumour" was rendered and the specimen was submitted for immunohistochemical (IHC) staining to recognise the origin of the neoplastic cells. Positive IHC staining of vimentin (Fig. 5), desmin, smooth muscle actin (SMA) (Fig. 6) and Ki67 (more than 20%) (Fig. 7) led to make a definitive diagnosis of LMS. Later, the patient was referred to an oncologist to begin the therapeutic process.

Discussion

LMS is a very rare entity in oral cavity. As far as we searched, there were only 12 case reports of primary maxilla LMS presented in English literature during the past 15 years. LMS may originate from sparse smooth muscles in wall of blood vessels, circumvallate papilla and myoepithelial cells of the salivary glands. Scarcity of smooth muscles in oral cavity explains the low occurrence of this neoplasm in this region, but it also may be associated with misdiagnosis of leon and delay in diagnosis. Another origin for LMS is pluripotential mesenchymal cells and metastasis from other body sites.

There is no age predilection for LMS but its frequency increases with age. It is more common in females. In our case the patient was a male, who was 73 years old at the time of diagnosis.

The most frequent site of involvement of primary LMS in oral cavity is mandible followed by maxilla, tongue, buccal mucosa, lip, floor of the mouth, hard palate, soft palate and maxillary sinus.

Computed tomography and magnetic resonance imaging (MRI) are needed after clinical examination. Especially, MRI is useful for the evaluation of vascular involvement. In this case, CBCT revealed an ill-defined mass in the posterior part of maxilla perforating buccal and palatal cortical plates and invading the right maxillary sinus. According to imaging, maxilla was the primary arising region of the lesion but determining the exact origin of the tumour of maxillary soft tissue or bone was not possible.

Most often, LMS is a painless mass firmly attached to the surrounding structures and sometimes may be ulcerated. Usually signs and symptoms are dependent to the location of the lesion where it arises, and are non-specific. In clinical evaluation, the lesion was about 3 cm with ulceration without pain, and was located under complete denture prosthetics. Although pain and tenderness are relatively prominent features in leiomyoma, they are rare presentation in LMS.

The diagnosis of LMS may be challenging in some cases and should be confirmed by IHC study. In our case, histopathologic evaluation revealed interlacing fascicles of spindle cells scanty having blunt-end nuclei with malignant features such as prominent nucleoli and mitotic activity. The tumour was moderately differentiated and there was a list of spindle cell sarcomas for differential diagnosis such as myofibrosarcoma, fibrosarcoma, malignant peripheral nerve sheath tumour (MPNST), malignant fibrous histiocytoma and rhabdomyosarcoma.

So, we recommended a panel of IHC markers including vimentin, desmin, smooth muscle actin, S100 and Ki67. Vimentin and desmin are intermediate filament proteins. Vimentin is related to mesenchymal origin of tumour and desmin is associated with skeletal and smooth muscle cells and is the most sensitive marker for skeletal and smooth muscle differentiation, but it is not specific and can be expressed in some other non-myogenous tumours. Our case showed positivity for vimentin and desmin in cytoplasm of tumoural cells.

Special isoforms of actin like SMA is useful for differentiation between smooth and skeletal muscle cells, although it can be expressed by myofibroblasts too, but the pattern of expression is different. SMA is expressed in cytoplasm periphery in myofibroblasts, but uniformly in
The Ki67 index in leiomyosarcoma (LMS) is related to prognosis of LMS. It is used for determining the mitotic index, which is a measure of cell proliferation. In our case, the Ki67 index was 5%, which is considered low. A Ki67 index of more than 50% in this case would suggest a higher proliferative activity and a worse prognosis.

The usual route of metastatic spread for LMS is bloodstream to the lungs. Therefore, local recurrence is usually not necessary for further surgical excision because of the low Ki67 index, indicating a lower proliferative activity.

References