Obesity Treatment/Etiology and Pathophysiology

The effect of (L-)carnitine on weight loss in adults: a systematic review and meta-analysis of randomized controlled trials

M. Pooyandjoo,1 M. Nouhi,2 S. Shab-Bidar,3 K. Djafarian4 and A. Olyaeemanesh5

1School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran, 2Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran, 3Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran, 4Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran, and 5National institute of health research, Tehran University of Medical Sciences, Tehran, Iran

Received 21 January 2016; revised 21 April 2016; accepted 9 May 2016

Address for correspondence: K Djafarian, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. E-mail: kdjafarian@tums.ac.ir

Summary
This study provides a systematic review and meta-analysis of randomized controlled trials, which have examined the effect of the carnitine on adult weight loss. Relevant studies were identified by systematic search of PubMed, Embase, Cochrane Central Register of Controlled Trials and reference lists of relevant marker studies. Nine studies (total n = 911) of adequate methodological quality were included in the review. Trials with mean difference (MD) of 95% confidence interval (CI) were pooled using random effect model. Results from meta-analysis of eligible trials revealed that subjects who received carnitine lost significantly more weight (MD: −1.33 kg; 95% CI: −2.09 to −0.57) and showed a decrease in body mass index (MD: −0.47 kg m⁻²; 95% CI: −0.88 to −0.05) compared with the control group. The results of meta-regression analysis of duration of consumption revealed that the magnitude of weight loss resulted by carnitine supplementation significantly decreased over time (p = 0.002). We conclude that receiving the carnitine resulted in weight loss. Using multiple-treatments meta-analysis of the drugs and non-pharmacotherapy options seem to be insightful areas for research. © 2016 World Obesity

Keywords: (L)-carnitine, BMI, meta-analysis, weight change.

obesity reviews (2016)

Introduction
Obesity, an epidemic worldwide issue, can lead to some chronic diseases such as dyslipidemia (1), type 2 diabetes mellitus (2), fatty liver (3) and cardiovascular diseases (4). Pharmacotherapy is a popular approach to weight loss among individuals. Carnitine is one of the drugs claimed to increase weight loss.

Carnitine or L-b-hydroxy-c-N-trimethylaminobutyric acid is synthesized in the liver and kidneys. (L-)carnitine decreases the intramitochondrial acetyl-CoA/CoA ratio through trapping of acetyl groups and activation of the pyruvate dehydrogenase complex (5).

This leads to simultaneous decrease in acetyl-CoA levels in the cytosol contributing to activation of the glycolytic pathway (6). (L-)carnitine, thus plays some roles in the glucose metabolism and may increase energy expenditure (7,8). Carnitine has an important role in lipid metabolism as well. It facilitates the transfer of long-chain fatty acids across the mitochondrial inner membrane as acylcarnitine esters and acts as an obligatory cofactor for β-oxidation of fatty acids (9). Because of these two effects of L-carnitine
on glucose and lipid metabolism, it may help weight loss by increasing energy expenditure (10).

Supplementing carnitine as a weight-loss agent is based on the fact that regular oral ingestion of this substance leads to the increase of its intracellular concentration. This in turn activates fat oxidation and helps reduction of the body’s fat reserves. A number of studies have shown that oral carnitine ingestion (up to 6 g d\(^{-1}\) for 14 d) does not change muscle carnitine concentration in healthy non-obese humans and does not cause weight loss (11,12). Other clinical studies, however, do report the effectiveness of carnitine supplementation in the treatment of obesity (13). A report has revealed that inhibition of hypothalamic carnitine palmitoyltransferase decreases food intake (14). Dietary carnitine stimulates carnitine palmitoyltransferase activation (15), which could underlie diminished appetite by L-carnitine supplementation. Thus, claiming that carnitine supplementation promotes weight loss in healthy non-obese individuals is not sufficiently substantiated, begging more investigations. Here, we have performed a systematic review and meta-analysis of randomized clinical trials to evaluate the effectiveness of L-carnitine supplementation on weight loss.

Methods

Data source and search strategy

A systematic review and meta-analysis of studies was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines (16). Comprehensive search strategies were used to identify reports of randomized controlled trials indexed in PubMed (from inception to May 2015), the Cochrane Library and Google scholar (from inception to May 2015). The following keywords were used for studies pertinent to the study objectives: (carnitine OR (L-)carnitine OR Levocarnitine) AND (weight OR weight loss OR weight reduction OR BMI OR weight change OR lipid oxidation OR anthropometry) AND (randomized controlled trial OR controlled clinical trial OR placebo OR randomized OR trial OR randomly OR group). Moreover, the reference lists of selected studies were searched to find other relevant trials. The language of publication was not restricted.

Study selection

The randomized controlled trial studies comparing the effects of (L-)carnitine and placebo on the subjects’ weight loss were included. Studies carried out on animals and the ones with follow-ups of less than 30 d were excluded. (L-)carnitine is defined as accelerator of fatty acid oxidation in mitochondria. Placebo was also defined as a medically ineffectual treatment similar to intervention supplementation in shape and colour. Weight change was considered as primary outcome. Other outcomes such as body mass index (BMI) change and body fat were considered as secondary outcomes.

Having pooled the retrieved papers and removing duplicates, two reviewers (M.P. and M.N.) independently skimmed the title and abstracts of searched paper to detect potentially eligible papers. Then, the body of the selected studies was scrutinized to exclude non-eligible ones and include qualified randomized controlled trials reports based on predetermined criteria. Any discrepancies raised between reviewers were discussed with a third reviewer (A.O.) in order to reach a consensus.

Data extraction and quality assessment

A data abstraction form was developed, and the reviewers extracted the outcomes of interest from the selected studies. General information (authors, title, journal of publication and date of publication), the study population characteristics (age, sex, race, health condition and BMI) and the study results (predefined outcomes) were extracted. Jadad scale (17) was used to appraise the included studies. Randomization allocation, allocation concealment and blinding of outcome assessment were some of the criteria.

Qualitative and quantitative analysis

Mean difference (MD) was used as the main measure to summarize clinical effect of the arms on the outcomes. Inverse-variance method was used to analyze the prepared data. To calculate pooled estimate of MD with 95% confidence interval (CI), the fixed effects and random effects models were used. \(I^2\) test was used to assess heterogeneity. \(I^2 > 50\%\) was assumed to represent heterogeneity among studies. If heterogeneity of the studies was not significant, the fixed effects estimation was reported. Sensitivity analysis of results was used to explore heterogeneity among trials. Meta-analysis was performed using REVMAN 5.2 software and meta-regression analysis was performed using STATA 14 software.

Results

A total of 2,145 studies were retrieved through search databases as depicted in Fig. 1. Having excluded the duplicates, the summaries of the 1,236 remaining studies were screened by the reviewers. Next, the body of the remaining 83 studies were scrutinized. At the end, nine studies were included in the review. Four of the studies had been conducted in Italy (18–21), and two in Iran (22,23). The other trials had been conducted in New Zealand (24), Australia (25) and Brazil (26). Of the total 911 individuals participated in the
included trials, 449 had received carnitine, and the remaining 462 subjects had been allocated to placebo/control arm. The publication year of included trials ranged from 2000 to 2013, spanning 13 years.

Moreover, four trials had compared (L-)carnitine with placebo (18,19,24,26). However, in the comparative arms of some studies, the subjects of both arms also had followed exercise protocol (12,23) or some complementary drugs (20,21). Four studies had included diabetic patients (18,20–22). One study had been conducted on subjects with bipolar disorder (24), and two studies had investigated obese subjects (12,23). One study had focused on physically active individuals (26), and the last trial had included subjects with muscle fatigue (19). Table 1 summarizes characteristics of the included trials.

Assessment the quality of studies

All of the included studies had adopted randomization criteria but some of them did not delineate clearly the schedule of randomization process (12,22,26). The blinding had been conducted in all of the included studies except for two studies (22,26). According to the Jadad scale, five studies received score 5 (18,20,21,23,24). Last column of Table 1 provides detailed results of quality assessment of the studies.

Table 1 Characteristics of included studies

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Population</th>
<th>Arms (dosage)</th>
<th>Sample size (women %)</th>
<th>Mean age (SD)</th>
<th>Baseline weight</th>
<th>Follow-up duration (day)</th>
<th>Quality assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barzegar et al.</td>
<td>2013</td>
<td>Diabetic obese women</td>
<td>(L-)carnitine (2 g d⁻¹) and low calorie diet</td>
<td>30 (0) Range from 20 to 50</td>
<td>83.8 (8.21)</td>
<td>95</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>Coelho et al.</td>
<td>2009</td>
<td>Physically active individuals</td>
<td>Placebo and low calorie diet (L-)carnitine (1.8 g d⁻¹)</td>
<td>11 (0)</td>
<td>46.7 (4.8)</td>
<td>82.35 (16.36)</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Derosa et al.</td>
<td>2003</td>
<td>Diabetic patients</td>
<td>Placebo and low calorie diet</td>
<td>11 (0)</td>
<td>44.7 (5)</td>
<td>83.57 (14.35)</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>Derosa et al.</td>
<td>2010</td>
<td>Obese diabetic patients</td>
<td>Placebo and low calorie diet</td>
<td>132 (50.7)</td>
<td>51 (4)</td>
<td>94.5 (9.6)</td>
<td>360</td>
<td>5</td>
</tr>
<tr>
<td>Derosa et al.</td>
<td>2011</td>
<td>Diabetic patients</td>
<td>Placebo and low calorie diet</td>
<td>129 (49.6)</td>
<td>54 (5)</td>
<td>97.7 (11.4)</td>
<td>360</td>
<td>5</td>
</tr>
<tr>
<td>Emilsie et al.</td>
<td>2006</td>
<td>Patients with bipolar disorder</td>
<td>Placebo and low calorie diet (L-)carnitine (15 mg kg⁻¹ d⁻¹)</td>
<td>125 (49.6)</td>
<td>51 (4)</td>
<td>96.9 (10.8)</td>
<td>182</td>
<td>5</td>
</tr>
<tr>
<td>Pistone et al.</td>
<td>2003</td>
<td>Elderly patients</td>
<td>Placebo and low calorie diet</td>
<td>42 (47.6)</td>
<td>81.5 (6.7)</td>
<td>66.9 (9.4)</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>Rafraf</td>
<td>2012</td>
<td>Diabetic women</td>
<td>Placebo and low calorie diet</td>
<td>11 (100)</td>
<td>34.4 (5.48)</td>
<td>87.72 (6.31)</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>Vilani et al.</td>
<td>2000</td>
<td>Obese women</td>
<td>Placebo and low calorie diet</td>
<td>18 (100)</td>
<td>27.2 (9.6)</td>
<td>70.1 (8.9)</td>
<td>56</td>
<td>3</td>
</tr>
</tbody>
</table>

SD, standard deviation.
Data synthesis
Nine trials were included in this review, but only six of them had reported the mean (standard deviation) of weight and five of them had reported mean (standard deviation) of BMI. One trial was excluded from meta-analysis because of reporting findings with median and two of the remaining trials did not report neither BMI or weight outcomes properly.

The eligible trials for quantitative analysis had reported their findings in different time points and with no estimation of changes in weight or BMI outcomes. Some reviews had used different implicit methods to determine the effect of the treatment (27,28). The steps followed in this study are clearly defined in the Tables S1–S4. This method had been used in different review studies (29,30). The subgroup analysis was considered for some chronic conditions such as diabetes and obesity. Insufficient available data on other potential causes of heterogeneities such as age and gender of subjects hinder an assessment of subgroup differences in the included trials.

Weight change
Six trials had reported weight changes in control and intervention groups. Using inverse-variance method, a significantly greater loss in weight was observed in participants who received the carnitine compared with control group, (MD: −1.33 kg; 95% CI: −2.09 to −0.57) $I^2 = 96%$. Figure 2 represents the forest plot of these results.

Body mass index change
Five trials had used this outcome to report their findings. Our analysis indicates that using the carnitine leads to significantly lower BMI compared with subjects who had received control, (MD: −0.47 kg m$^{-2}$; 95% CI: −0.88 to −0.05) $I^2 = 93%$. Figure 3 represents the forest plot of these results.

Subgroup and meta-regression analysis
Diabetic versus non-diabetic patients
Three trials had been conducted on patients suffering from diabetes. Pool estimate of their results indicated that those who received carnitine had significantly much weight loss compared with control group, (MD: −1.96 kg; 95% CI: −2.21 to −1.7) $I^2 = 0%$. In non-diabetic people a significant weight loss was observed, (MD: −0.54 kg; 95% CI: −0.6 to −0.49) $I^2 = 0%$. Figure 4 show the forest plot of this analysis.

Obese versus non-obese participants
Totally, five trials involved obese subjects. Our results show that those who had received carnitine experienced a significantly much weight loss compared with the control group, (MD: −1.25 kg; 95% CI: −2.14 to −0.36) $I^2 = 97%$. In non-obese –as well- a significant weight loss was observed, (MD: −1.75 kg; 95% CI: −2.37 to −1.12) $I^2 = 0%$. Figure 5 represents the forest plot of this analysis.

Dosage and duration of consumption
Duration of the trials included varied from 1-month to 1-year follow-up. Meta-regression analysis showed that the duration of consumption were negatively related to effect size (regression coefficient = −0.24; 95% CI: −0.38, −0.09 $p = 0.002$). It means when the carnitine was used for longer time, it expected that the magnitude of weight loss will decrease.
The carnitine dosage varies from 1.8 g d⁻¹ to 4 g d⁻¹ in the trials. Meta-regression analysis done emphasized that dose of the carnitine did not significantly change the effect size (regression coefficient = 0.06; 95% CI: −3.16, 3.28 p = 0.972).

Sensitivity analysis

Regarding the considerable heterogeneity among the included trials, it was found that most heterogenic trials in pool estimation of the outcomes were related to those studies that had low score in methodological quality assessment such as Villani et al. (12) and Barzegar et al. (22). However, the sensitivity analysis of these trials did not affect our final results.

Discussion

Obesity is a serious health problem, which has increasingly become associated with higher rate of mortality and morbidity in the world. Along with weight control as becoming more difficult in this industrialized world, weight loss is getting more attention. Anti-obesity drugs have no side effects of invasive surgeries, and hence, they are more commonly used than other options like physical activities. Carnitine has been applied for prevention of cardiovascular disease (31), end-stage kidney diseases (32), dialysis-related hypertension (33), treatment of persistent depressive disorder (34) and treatment of non-alcoholic fatty liver disease (35). However, evidence regarding the anti-obesity effects of the carnitine is still inconclusive. Here, we pooled the trials comparing the effect of carnitine and control on weight loss in adults. Weight and BMI were two variables that were considered as for assessing weight loss of the participants. After, excluding the studies that did not meet our criteria, nine studies were accepted for final analysis. However, only seven of them were eligible for quantitative analysis. Most of the included trials were of relatively adequate methodological quality. We found that carnitine has had a decreasing impact onto weight and BMI in these trials. Positive influence of carnitine onto weight loss was found in chronic conditions such as diabetes and obesity. Our meta-regression analysis

![Figure 4](image)

Figure 4 Forest plot of diabetic patents.

![Figure 5](image)

Figure 5 Forest plot of obese people.
indicates that magnitude of weight loss would decrease over time. Although the analysis indicated that dosage of carnitine had positive, but not significant, impact on weight change, insufficient power of analysis precluded us to have any recommendation regarding the best dosage of the carnitine. No study had systematically reviewed anti-obesity impact of the carnitine. There was, however, a narrative review, which had focused on metabolic function of the carnitine in human setting (36), but that study has not directly addressed clinical effect of carnitine. Evidence about pharmacotherapy of obesity have addressed the long-term impact of orlistat, sibutramine and rimonabant on weight loss in people (37,38). Although carnitine has a lower magnitude of weight loss than these drugs, unlike them, it does not suffer from some side-effects such as gastrointestinal issues, rising blood pressure, and pulse rate and increased risk of psychological disorder (39,40). The researchers had some trials, which had relatively heterogenic characteristics. Lack of sufficient data precluded us to assess the impact of the variables on effect size of the study. More investigations would help to have a better assessment of the comparative effect of the anti-obesity drugs in long-term follow-up studies. Multiple-treatments meta-analysis of the drugs and non-pharmacotherapy options might be helpful in this regard.

Conclusions
Carnitine might be an effective drug for weight loss in adults.

Conflict of interest statement
The authors declared that they have no potential conflicts of interest.

Acknowledgements
This review was funded by Tehran University of Medical Sciences. Tehran University of Medical Sciences and Health Services. We thank the referees for their valuable comments.

Supporting Information
Additional Supporting Information may be found in the online version of this article, http://dx.doi.org/10.1111/obr.12436

References
22. Barzegar A, Alipour B, Panahi F, Karamzad N. Effect of L-carnitine supplementation on serum adipokines (leptin and
26. Coelho CF, Mota JF, Ravagnani FCP, Burini RC. The supplementation of L-carnitine does not promote alterations in the resting metabolic rate and in the use of energetic substrates in physically active individuals. Arq Bras Endocrinol Metab 2009; 54: 37–44.