Hellenic Journal of Nuclear Medicine

Volume 7 • Number 3 • September - December 2004

Indexed in / abstracted by EMBASE (Excerpta Medica) and Copernicus

The first hellenic journal of nuclear medicine

Greek Section - Abstracts in English

Editorial: Diagnostic and prognostic value of serum prostate specific antigen in prostate carcinoma

Review Article: Nuclear medicine procedures in lung cancer imaging. D. Boundas, N. Karatzas

Original Paper: Correlation of procollagen (I) with prostate specific antigen and bone scan for the diagnosis of bone metastases in patients with prostate carcinoma. A. Zissinopoulos, C. Stelios, G. Petrakis, N. Baziotis

Case Report / Brief Review: A patient with MEN-IIA syndrome due to de novo mutation and papillary thyroid carcinoma; the role of Tc-depoeidode in diagnosing metastases and brief review of the literature. P. Valkanioti, S. Zerva, A. Arka, D. Kotsias, S. Lucchetti, K. Psarrakos, C. Zerva, A. Goutzamani-Psarrakou

Correspondence

Abstracts from the English Section

English Section

Editorial Notes: Limited abilities of our mind and the future of nuclear medicine. P. Grammaticos

Functional Imaging: Where is the future? A. Otte, R. Dierckx

Original Papers:
- Radio- and chemo-sensitization of human erythroleukemia K562 cells by the histone deacetylase inhibitor Trichostatin A. T. Karagiannis, A. Smith, A. E. Ota
- Isolation period prediction in patients with differentiated thyroid carcinoma treated after thyroidectomy by radiodine-131. P. Markou, D. Chatzopoulos

Research Papers:
- Thyroglobulin increment after thyroid hormone withdrawal is a reliable indicator for the detection of significant remnants of metastases in patients with differentiated thyroid carcinoma. R. Zakavi, Z. Mousavi, N. Fard
- Scintigraphic patterns in patients with subclinical hyperthyroidism. F. Canbaz, T. Basoglu, D. Kececi, O. Yapici, M. Akkurt

Case Report:
- Suspected thyroid stunning after radiodine-131 scanning in a patient with a diffuse goiter. J. W. van Isselt, P.C. Oldenburg-Lorigen, P. P. van Rijk

Announcements / Forthcoming Meetings

Subject and Authors' Index of Volume 7, 2004, Issues (1), (2) and (3)
Radiation dose rate and urinary activity in patients with differentiated thyroid carcinoma treated with radioiodine-131; a survey in Iranian population

Abstract

The study was undertaken in order to estimate the radiation doses, that patients from Iran who received Na131I for the treatment of differentiated thyroid carcinoma (DTC) emit to their environment and also in order to evaluate the instructions given to these patients after being released from the nuclear medicine department. In 29 patients with DTC following thyroidectomy and immediately after the administration of therapeutic Na131I for the ablation of the thyroid remnants, the dose rates from the 131I radioactivity emitted by these patients were measured at 3 meters. Also in these patients the dose rates from the 131I were measured before they left the nuclear medicine department, at distances of 0.5 m, 1 m, and 3 m. The urine of these patients was collected for up to 3 days after 131I administration. Results are as follows: The maximum dose received by the nursing staff was 1.6 mSv/week, less than the dose recommended by the International Committee for Radiation Protection (ICRP). The dose received by family members, as calculated on the basis of the time average dose rate on day 3 after the administration of 131I was 46.3, 24.63, and 14.78 mSv/h at distances of 0.5, 1, and 3 m respectively. These results indicate that family members should take into consideration the duration and the distance of being in close contact with the above patients. The time-rate curve of urinary excretion of radioactivity in all patients showed multiple peaks due to the retention and redistribution of 131I within the body and the enterohepatic cycle of radioiodinated thyroid hormones.

Introduction

Patients with differentiated thyroid carcinoma (DTC), following thyroidectomy, are usually treated with high doses of 131I. Because 131I is excreted by multiple excretion pathways and because the radionuclide in addition to beta also emits gamma rays, patients who have undergone treatment with 131I become radioactive and may contaminate their environment. Members of the public, waste disposing workers, medical personnel, family members and caregivers may receive some irradiation. Radioactivity emitted from 131I induces an external radiation hazard but there is also a potential for exposure via contamination [1,2]. Several studies have measured the exposure rate from patients who received 131I for the treatment of DTC [3-7]. Activity excreted in various body fluids (urine, saliva, palm sweat, milk and blood) and in the exhaled breath has also been measured in these patients [8-10]. Based on experimental work, emissions from the 364 keV gamma photons that 131I emits to the public, may by time be a low risk of cancer induction or of inducing hypothyroidism. Measures and precautions to reduce or prevent this risk are welcome [2]. In the 1990s the International Committee for Radiation Protection (ICRP) issued recommendations concerning dose limits and precautions constraint. These recommendations suggest that the policy for releasing patients with DTC who underwent thyroidectomy and received ablation doses of 131I, from the nuclear medicine departments should be based both on general national rules and specific regional conditions [2].

The main purpose of this research was to study the kinetic and dosimetric characteristics of 131I, to estimate the radiation doses to the public, and to check the policy for the release of these patients from the nuclear medicine departments in Iran. The iodide urinary excretion up to 3 days was also measured to estimate the 131I urinary excretion pattern in Iranian patients.
Patients and methods

Twenty-nine patients who referred to the Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, were selected for this study. All patients gave their informed consent. The present work was approved by the Ethics Committee of the Tehran Research Institute for Nuclear Medicine. All patients had DTC and received 131I treatment for the ablation of the thyroid remnant after surgery. Five out of 29 patients had metastases in addition to thyroid remnants. The mean activity administered was 4±0.9 GBq (range: 3.7 to 7.4 GBq). Fixed doses from 3.7 to 7.4 MBq were administered. 131I activity, before administered to the patient was measured in a dose calibrator (Capintec, Radioisotope Calibrator CRC-12, USA). After receiving 131I, patients were isolated for three days in special rooms for radiation protection purposes, and were released when the instantaneous dose rate dropped below 1.8 mR/h at a distance of 1 m as recommended by the ICRP [6].

The instantaneous dose rate was measured immediately after the administration of 131I with the patients in the upright position at a distance of 3 m and just before they left the nuclear medicine department at distances of 0.5, 1, and 3 m using an ionization survey meter (Radiation Alert, Monitor 5, USA). The time the nursing staff spent close to these patients was also measured. Since in our department nursing staff aren't in close contact with these patients except in emergency situations, and only just before discharging them from the department, therefore the cumulative dose received by the nursing staff at various distances, was calculated by multiplying the instantaneous dose rate by the exposure time. The radioactivity dose received by family members was calculated on the basis of the time average dose rate [11]. Assuming the dose rate decrease was only due to radioactivity decay, it can be shown that the time average dose rates over an 8-hour-working day could be derived by multiplying the corresponding instantaneous dose rate by a factor of 0.985. Thus: Total Dose = time average dose rate x exposure time. The retained activity in the patient was determined by measuring the instantaneous dose rate at a distance of 3 m immediately after the 131I dose administration and just before the discharge from the nuclear medicine department of the patients. The remaining activity was calculated using the following equation: Remaining activity: (instantaneous dose rate on the third day x administered activity)/instantaneous dose rate on the first day.

Urine from every patient was collected for up to 3 days after 131I administration. The period of urine collection was between 2-4 h. The activity of the urine samples was measured with the radionuclide dose calibrator mentioned before.

Results

The mean instantaneous dose rate from the patients at various distances is presented in Figure 1.

The average instantaneous dose rate per unit of administered activity at distances of 0.5, 1, and 3 m from our patients on the third day, varied considerably from 0.1±0.12, 0.04±0.05 to 0.02±0.03 mSv/h/37 MBq respectively. Also, 131I body retention varied considerably between patients, ranging from 0.8 GBq. The dose received by family members was calculated on the basis of the time average dose rate [4]. Assuming the dose rate decreased due to radioactive decay alone, the maximum time average dose rate (over an 8-hour-working day) was 46.3, 24.63, and 14.78 mSv/h at distances of 0.5, 1, and 3 m respectively on the third day. The urinary excretion rate-time curve [ln(Dx/Dt) as a function of time (t)] in all patients showed multiple peaks due to the retention and redistribution of 131I and the enterohepatic cycle of radiiodinated thyroid hormones (Fig. 2). The daily percentages of administered activity excreted in the urine were on average 53.2%, 15.21%, and 4.11% on the 1st, 2nd, and 3rd day respectively (Table 1).
Discussion

Patients treated with radiiodine present a radiation hazard to their environment and precautions are necessary to limit the radiation dose to the nursing staff, their family members, and to members of the public. The precautions advised usually refer to the 131I dose rate or to the 131I retention by the body. Potential sources of radiation risk include both emitted radiation and excretion of radioactivity via the urine, the exhaled air, sweat, and the saliva. Apart from the urinary 131I excretion, the other routes of excretion are minimal [5].

The dose rate and remaining activity values of 6 out of 29 patients were higher than those of the others and this contributed to a high standard deviation. Only one of these six patients had metastases. It was noteworthy that other patients with metastases showed a moderate dose rate exposure or moderate remaining 131I activity in the body. These findings are in close agreement with the findings of Barrington et al. (1996) [5]. Factors affecting exposure rates may differ from one patient to the other. Some of these factors include: gastrointestinal tract absorption and excretion, endogenous labeling of the thyroid hormones, hepatic excretion, and renal function [6]. Due to rapid excretion of 131I through the urine, radiation dose rate at 3 m decreased significantly on the third day from 78.79 to 2.94 mSv/h. The instantaneous dose rate at 0.5 m decreased by an average factor of 0.54±0.22 and 0.24±0.16 at 1 and 3 m respectively, showing extensive distribution of iodine in the body [4]. Since DTC patients after receiving 131I treatment are isolated for 3 days, the maximum dose that the nursing staff could have received as calculated on the basis of time exposure during hospitalization, was 1.6 mSv/week being less than that recommended by ICRP. Our results from Iranian patients indicate that family members should take into account the time and distance in close contact with patients who have been given 131I treatment in order to avoid receiving more than the recommended doses.

The urinary excretion of 131I radioactivity patterns in all patients was similar (Fig. 3) and in close agreement with the values obtained by Barrington et al. (1996) [5]. Our results showed that an average sixty hours post administration of 131I, 70% of the administered dose was excreted through the urine, 4% remained in the body and 26% decayed or excreted through other routes such as sweat, saliva, bowel and exhalation. Since a lot of activity is excreted through urine, thus patients should be advised to drink a lot of fluid and urinate frequently.

In conclusion, according to the protocol adopted by most departments in Iran, DTC patients receiving high doses of 131I, are discharged from the nuclear medicine department when instantaneous dose rate is less than 50 mSv/h at a distance of 1 m or when 131I retention is less than 370 MBq. The fact that some patients or family members are not aware of ionizing radiation risks, or don’t pay attention to the ICRP recommendations, makes the risk of unwarranted exposures and hazardous contamination significant. Our patients are from different socioeconomic levels and following discharge they might use public transportation for a considerable period of time. Moreover, their housing and status of living might be less than standard. Based on the above results, at least in countries such as ours we strongly recommend changing the policy for release of all patients receiving 131I therapy except those who are capable to keep instructions properly. Patients should be discharged from nuclear medicine department when 131I body retention and instantaneous dose rate are less than 111 MBq and 20 mSv/h at a distance of 1 m respectively, so as to constitute a minimal risk of radiation hazard to their environment.

Acknowledgments: This study was financially supported by the Faculty of Pharmacy, Shahed Beheshti University of Medical Sciences, Tehran, Iran. The co-operation of the Research Institute for Nuclear Medicine, Tehran University of Medical Sciences is gratefully acknowledged.

Bibliography

2. ICRP Task group 42, Release of patients after therapy with unsealed radionuclides. Draft 4/29/03.