Original article

Prevalence of adeno-associated virus and human papillomavirus DNA in Iranian women with and without cervical cancer

Nazanin Zahra Shafiee-Jandaghi a, Jila Yavarian a, Ebrahim Faghihloob, Nastaran Ghavamia, Zohreh Yousefi Ghalejoogh a, Seyed Jalal Kiani a, Somayeh Shatizadeh Malekshahia
Reza Shahsiah c, Eisa Jahanzad c, Mostafa Hosseind, Talat Mokhtari Azada,a

a Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
b Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
c Pathology Department, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
d Epidemiology and Biostatistics Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

ARTICLE INFO

Article history:
Received 22 August 2016

Keywords:
AAV
Cervical cancer
HPV
Iran

ABSTRACT

There is plenty of substantial evidence to support anti-tumor activity of viruses. Adeno-associated virus (AAV) may interact with human papillomavirus (HPV) to modify the risk of cervical neoplasia. The seroprevalence of AAV among women with cervical cancer has been reported to be lower than healthy ones. In spite of this finding, detection of AAV DNA in cervical biopsies does not entirely support the inverse association between AAV seropositivity and cervical cancer. This association is still controversial and requires more thorough evaluation in different countries. The aim of this case–control study was to find the prevalence of AAV and HPV DNA sequences in Iranian women with and without cervical cancer to assess the probable association of AAV infection and cervical cancer. In this study, paraffin-embedded tissue samples of 61 cervical cancer cases and 50 healthy controls (HCs) were investigated for AAV and HPV DNA by semi-nested and nested PCRs respectively. AAV DNA was detected in 7 cases (14%) of HCs and 9 specimens (14.8%) of case group. According to the branching in the phylogenetic tree, AAV2 was the only type detected in this study. Moreover, HPV DNA was detected in 8 cases (16%) of HCs and 44 specimens (72.13%) of case group. In conclusion, a low proportion of cervical biopsies from Iranian women contained AAV-2 genome. No significant difference in correlation between HPV and cervical cancer in presence or absence of AAV genome in cervix was found.

© 2017 Elsevier GmbH. All rights reserved.

1. Introduction

Cancer is one of the most important causes of death worldwide then understanding the etiology, pathogenesis and treatment of cancer is a major challenge in medicine. Different environmental and genetic factors increase the risk of neoplasm development [1]. Among environmental factors, infections are associated with almost 17.8% of all cancers [2]. Overall around 15% of all human malignancies can be attributed to viral infections [3]. In developing countries, this percentage is even higher because certain infections are more common in these countries [4]. In this issue viral infections have two divergent faces, some viruses can be onco-

genic, however some have anti-tumor activity which specifically kill tumor cells but leave the normal ones undamaged [5]. Adeno-associated viruses (AAVs) are ubiquitous human helper-dependent parvoviruses with some evidence of antitumor activity particularly in cervical cancer [6]. This malignancy ranks as the third cause of death in the gynecologic cancers and 14th among all cancers affecting women in the United States (American cancer society). Moreover, human papillomavirus (HPV) infection has been recognized as the main cause of cervical cancer [4]. AAV may interact with HPV to modify the risk of cervical neoplasia [6].

AAVs are members of genus Dependovirus from the Paroviridae family, which require a helper virus to facilitate their replication. In the absence of a helper virus within the cell, AAVs establish a latent infection [7]. It is well-known that the primary AAV infection commonly occurs in childhood [7]. In human, AAV infection has not been associated with any disease regardless of its ability to integrate into genome of the cell. Serological studies in human suggest that AAV infection is prevalent [8].

http://dx.doi.org/10.1016/j.prp.2017.02.010
0344-0338/© 2017 Elsevier GmbH. All rights reserved.
The seroprevalence of AAV among women with cervical cancer has been reported to be lower than healthy women [4]. In spite of this finding, detection of AAV DNA in cervical biopsies does not entirely support the inverse association between AAV seropositivity and cervical cancer [9].

This association is still controversial and needs to be evaluated by further epidemiological studies in different countries.

The aim of this case–control study was to estimate the prevalence of AAV and HPV DNA sequences in Iranian women with and without cervical cancer to assess the probable association of AAV infection and invasive cervical cancer.

2. Materials and methods

Paraffin-embedded tissue samples of 61 cervical cancer cases and 50 healthy controls (HCs) were provided from archives of Pathology Department, Imam Khomeini hospital, Tehran, Iran. All histological slides from cervical biopsies were retrieved from patients’ medical records. All of histological slides from cervical biopsies were re-evaluated before laboratory analysis and the samples with no pathological changes were classified as HCs and the samples with pathological changes related to cervical cancer as case group, were included in this study.

Avoiding any cross-contamination between samples, 5–10 μm thick sections were prepared from each specimen. The sections were deparaffinized with xylene then digested with digestion buffer containing proteinase K. DNA was extracted with phenol/chloroform method and its quality was evaluated by PCR using specific primers for human β-globin gene [10]. All β-globin-positive samples were subjected to both nested PCR for HPV using the consensus MY09/MY11 primer pair (outer primers) and the GP5+/GP6+ primer pair (inner primers), targeting about 150 bp fragment of HPV L1 gene [11] and semi-nested PCR for AAV (Rep gene) detection. AAV semi-nested PCR was carried out using following forward and reverse primers (designed in this study): In the first round: AAV F1: 5' - ACC AAC ATC CCG GAR GCC AT-3'; AAV Rα: 5' - GCC TGC TGG TGT TCR AAG GT-3' and in the second round AAV F2: 5' - AAC TGG ACC AAT GAR AAA TTC CCC T-3' with the same reverse primers were used. As the positive control, the in vitro synthesized PUC57 plasmid enclosing desired fragment was used for AAV and a positive cervical sample was used for HPV.

The resulting amplicons of the second round of PCR for AAV amplification were sequenced at the National Influenza Center, School of Public Health, Tehran University of Medical Sciences.

BioEdit version 7.0.0 DNA analysis software [12] was used to align the sequences. To identify AAV types phylogenetic tree was constructed by TREECON package version 1.3 b [13], applying Kimura's two-parameter method and the neighbor-joining method with 1000 replicates bootstrap analysis.

Statistical analysis was performed using IBM® SPSS® Statistics V22.0. The Chi square and Mantel-Haenszel tests were used to measure the differences. P values <0.05 were considered statistically significant.

3. Results

In this study a total of 111 paraffin-embedded cervical biopsies from Iranian women diagnosed with and without cervical cancer (case and control) were analyzed for presence of AAV and HPV DNAs.

Age distribution in both case and control groups showed, the most samples belonged to women aged from 41 to 60. The mean age in case and control groups was 49.47 ± 10.33 years (range: 26–80 years) and 48.32 ± 10.62 years (range: 26–77 years) respectively. No significant difference in age was found between case and control groups in this study (P value = 0.695).

AAV DNA was positive in 14% (7/50) of HC group and in 14.7% (9/61) of case group (p = 0.91). Moreover, HPV DNA was positive in 16% (8/50) of HC group and in 72.13% (44/61) of case group. In HC group 87.5% (7/8) of detected HPVs were type 16 and one was type 33. In case group type 16, 18 and 31 were detected with 75% (33/44), 4.6% (2/44) and 2.2% (1/44) frequencies. Simultaneous infections with two or three types were found in 18.2% (8/44) of case group.

No significant difference in correlation between HPV and cervical cancer in presence or absence of AAV genome in cervix was shown by Mantel-haenszel test (Table 1). All 16 AAV positive samples were subjected to sequencing. According to the branching in the phylogenetic tree, AAV2 was the only type detected in this study (Fig. 1) (GenBank Accession Numbers: KT906216-KT906231).

4. Discussion

Serological documents suggested that AAV infections have been prevalent in human [8] with seroprevalence from 30% to 60% [14]. However 11 different types had been described for AAV, only AAV1–5 and AAV7–9 can be classified as true serotypes and AAV6, 10, and 11 are just different variants. Among these, AAV2, 3 and 5 are the most prevalent serotypes, respectively [7,15].

Several epidemiological and experimental studies suggested that AAV might have anti-oncogenic activity and it was recognized as an oncolytic agent. It might interact with HPV and modify the risk of cervical cancer [6]. The reverse association between AAV seropositivity and cervical neoplasia has been stated in different studies [4,15,16], moreover in vitro researches have revealed that Rep78 gene of AAV can interfere with HPV-induced cell transformation [17]. Nevertheless, DNA-based analyses on cervical specimens regarding AAV role in cervical cancer, showed inconsistent results [9].

The present study is the first to assess the prevalence of AAV and HPV DNA simultaneously in Iranian women with and without cervical cancer. Here no reduction in cervical cancer risk in the presence of AAV DNA was found.
Some researches could show the inverse association of AAV infection and the cervical cancer incidence in human, although others failed to find it. It was shown by Coker et al. that AAV positivity significantly was associated with a decreased risk of high-grade squamous intra epithelial lesion (HSIL) [6]. In 2008, Agorastos performed a case control study in which the confirmed AAV infection was detected in 16.8% of all cervical samples in women with and without cervical neoplasia [15]. The results indicated the less likelihood of cancer development in HPV-infected individuals in the presence of AAV [18]. In 2012 in Brazil, the AAV prevalence in cervical samples of HIV positive and negative women was 18.7% and 20.3%, respectively. The only detected type was AAV2. Co-infected women with both AAV and HPV in comparison with those infected just with HPV showed a lower rate of cervical intraepithelial neoplasia development [19].

Ahn et al. found that AAV is not associated with any stages of cervical pre-cancer and cancer lesions by in situ hybridization and immunohistochemistry [20]. A case control study in pregnant and non-pregnant women, both diagnosed with CIN I- III showed that AAV2 infections had no impact on development of CIN [15]. In 2006 Zheng et al., performed a retrospective case control study. They found no reduction in cervical cancer risk in the presence of AAV. At baseline the prevalence of AAV was 2% and 3% in case and control population while upon cancer diagnosis it was 12% and 3% respectively [4].

In conclusion, in this study a low proportion of cervical biopsies contain AAV-2 genome.

The rate of HPV positivity among cancer group was 72.13%, which was lower than expected percentage based on some studies. However it should be considered that the prevalence and HPV types reported in different studies are varied based on the sample type and the sensitivity of HPV DNA detection methods.

The correlation between HPV and cervical cancer showed no significant difference in presence or absence of AAV genome in cervix. However, it should be noted that all of the data was derived from PCR-based amplification assay and in the absence of any serological data (AAV antibodies) this conclusion seems difficult to justify. Different prevalence of AAV DNA can be due to the divergent detection methods, besides different size and types of the samples might affect the rate of detection as fixed samples frequently have more DNA degradation.

Conflict of interest

The authors declare no conflicts of interest.

Acknowledgements

We express all our thanks to our colleagues in Virology Department, School of Public Health, Tehran University of Medical Sciences and Imam Khomeini hospital. This study was supported by Tehran University of Medical Sciences, Grant No.92-01-27-21263.

References


